p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C23×C4).11C4, C24.118(C2×C4), (C22×C4).275D4, C22.C42⋊15C2, C24.4C4.18C2, (C22×C4).667C23, C23.190(C22×C4), (C23×C4).241C22, C23.198(C22⋊C4), C22.20(C4.D4), C2.9(C23.34D4), C22.30(C42⋊C2), C4.101(C22.D4), C22.12(C4.10D4), (C2×M4(2)).160C22, (C2×C4⋊C4).53C4, (C2×C4).1322(C2×D4), (C22×C4⋊C4).12C2, (C22×C4).54(C2×C4), C2.26(C2×C4.D4), (C2×C4).310(C4○D4), (C2×C4⋊C4).755C22, C2.24(C2×C4.10D4), (C2×C4).125(C22⋊C4), C22.255(C2×C22⋊C4), SmallGroup(128,553)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C22×C4 — C2×C4⋊C4 — C22×C4⋊C4 — (C22×C4).275D4 |
Generators and relations for (C22×C4).275D4
G = < a,b,c,d,e | a2=b2=c4=1, d4=c2, e2=c, dad-1=eae-1=ab=ba, ac=ca, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=bc-1d3 >
Subgroups: 308 in 158 conjugacy classes, 56 normal (14 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C22⋊C8, C2×C4⋊C4, C2×C4⋊C4, C2×M4(2), C23×C4, C23×C4, C22.C42, C24.4C4, C22×C4⋊C4, (C22×C4).275D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C4.D4, C4.10D4, C2×C22⋊C4, C42⋊C2, C22.D4, C23.34D4, C2×C4.D4, C2×C4.10D4, (C22×C4).275D4
(2 27)(4 29)(6 31)(8 25)(10 24)(12 18)(14 20)(16 22)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 25)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 7 5 3)(2 4 6 8)(9 15 13 11)(10 12 14 16)(17 23 21 19)(18 20 22 24)(25 27 29 31)(26 32 30 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 7 16 5 10 3 12)(2 17 4 23 6 21 8 19)(9 31 15 25 13 27 11 29)(18 26 20 32 22 30 24 28)
G:=sub<Sym(32)| (2,27)(4,29)(6,31)(8,25)(10,24)(12,18)(14,20)(16,22), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,7,5,3)(2,4,6,8)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,27,29,31)(26,32,30,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,7,16,5,10,3,12)(2,17,4,23,6,21,8,19)(9,31,15,25,13,27,11,29)(18,26,20,32,22,30,24,28)>;
G:=Group( (2,27)(4,29)(6,31)(8,25)(10,24)(12,18)(14,20)(16,22), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,7,5,3)(2,4,6,8)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,27,29,31)(26,32,30,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,7,16,5,10,3,12)(2,17,4,23,6,21,8,19)(9,31,15,25,13,27,11,29)(18,26,20,32,22,30,24,28) );
G=PermutationGroup([[(2,27),(4,29),(6,31),(8,25),(10,24),(12,18),(14,20),(16,22)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,25),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,7,5,3),(2,4,6,8),(9,15,13,11),(10,12,14,16),(17,23,21,19),(18,20,22,24),(25,27,29,31),(26,32,30,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,7,16,5,10,3,12),(2,17,4,23,6,21,8,19),(9,31,15,25,13,27,11,29),(18,26,20,32,22,30,24,28)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | C4○D4 | C4.D4 | C4.10D4 |
kernel | (C22×C4).275D4 | C22.C42 | C24.4C4 | C22×C4⋊C4 | C2×C4⋊C4 | C23×C4 | C22×C4 | C2×C4 | C22 | C22 |
# reps | 1 | 4 | 2 | 1 | 4 | 4 | 4 | 8 | 2 | 2 |
Matrix representation of (C22×C4).275D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 1 |
0 | 0 | 1 | 16 | 16 | 0 |
0 | 15 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 5 | 9 |
0 | 0 | 6 | 0 | 15 | 7 |
0 | 0 | 6 | 11 | 11 | 13 |
0 | 0 | 10 | 13 | 11 | 13 |
0 | 8 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 16 | 1 |
0 | 0 | 0 | 1 | 16 | 0 |
0 | 0 | 1 | 0 | 16 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,15,16,16,16,0,0,0,0,0,16,0,0,0,0,1,0],[0,9,0,0,0,0,15,0,0,0,0,0,0,0,10,6,6,10,0,0,0,0,11,13,0,0,5,15,11,11,0,0,9,7,13,13],[0,15,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,15,16,16,16,0,0,0,1,0,0] >;
(C22×C4).275D4 in GAP, Magma, Sage, TeX
(C_2^2\times C_4)._{275}D_4
% in TeX
G:=Group("(C2^2xC4).275D4");
// GroupNames label
G:=SmallGroup(128,553);
// by ID
G=gap.SmallGroup(128,553);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,58,2804,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^4=c^2,e^2=c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=b*c^-1*d^3>;
// generators/relations